Transient PKA activity is required for initiation but not maintenance of BDNF-mediated protection from nitric oxide-induced growth-cone collapse.
نویسندگان
چکیده
Growing axons during development are guided to their targets by the activity of their growth cones. Growth cones integrate positive and negative guidance cues in deciding the direction in which to extend. We demonstrated previously that treatment of embryonic retinal ganglion cells with brain-derived neurotrophic factor (BDNF) protects their growth cones from collapse induced by nitric oxide (NO). BDNF stabilizes growth-cone actin filaments against NO-induced depolymerization. In the present study, we examined the signaling mechanism involved in BDNF-mediated protection. We found that BDNF causes transient activation of protein kinase A (PKA) during the first 5 min of treatment. Treatment with PKA inhibitors before or in conjunction with BDNF treatment blocked the protective effects of BDNF. The effects of BDNF, however, were not blocked when addition of PKA inhibitors was delayed as little as 15 min after BDNF treatment. When cultures raised overnight in BDNF were treated with PKA inhibitors, BDNF-mediated protection did not end, demonstrating that the maintenance of the protective effects of BDNF is independent of PKA activity. The BDNF-induced activation of PKA was required for BDNF-mediated stabilization of growth-cone actin filaments against depolymerization by cytochalasin D. Finally, the initiation and maintenance of the protective effects of BDNF required protein synthesis. Collectively, these data demonstrate that PKA signaling is required only for an early phase of BDNF-mediated protection from NO-induced growth-cone collapse.
منابع مشابه
Stabilization of growing retinal axons by the combined signaling of nitric oxide and brain-derived neurotrophic factor.
The pattern of axonal projections early in the development of the nervous system lacks the precision present in the adult. During a developmental process of refinement, mistargeted projections are eliminated while correct projections are retained. Previous studies suggest that during development nitric oxide (NO) is involved in the elimination of mistargeted retinal axons, whereas brain-derived...
متن کاملLentiviral Mediated Expression of Soluble Neuropilin 1 Inhibits Semaphorin 3A-mediated Collapse Activity in Vitro
Introduction: Semaphorin 3A (Sema 3A) is a secreted protein, which plays an integral part in developing the nervous system. It has collapse activity on the growth cone of dorsal root ganglia. After the development of the nervous system, Sema 3A expression decreases. Neuropilin 1 is a membrane receptor of Sema 3A. When semaphorin binds to neuropilin 1, the recruitment of oligodendrocyte precurso...
متن کاملNerve growth factor and semaphorin 3A signaling pathways interact in regulating sensory neuronal growth cone motility.
Neurotrophins and semaphorin 3A are present along pathways and in targets of developing axons of dorsal root ganglion (DRG) sensory neurons. Growth cones of sensory axons are probably regulated by interaction of cytoplasmic signaling triggered coincidentally by both types of guidance molecules. We investigated the in vitro interactions of neurotrophins and semaphorin 3A (Sema3A) in modulating g...
متن کاملcAMP-mediated regulation of neurotrophin-induced collapse of nerve growth cones.
Neurotrophins are known to promote the survival, differentiation, and neurite outgrowth of developing neurons. Here we report that acutely applied brain-derived neurotrophic factor (BDNF) induces rapid growth cone collapse and neurite retraction of embryonic Xenopus spinal neurons in culture. The collapsing effect of BDNF depends on the activation of Trk receptor tyrosine kinase, requires an in...
متن کاملNitric Oxide Functions; an Emphasis on its Diversity in Infectious Diseases
Nitric oxide is a short-lived mediator, which can be induced in a variety of cell types and produces many physiologic and metabolic changes in target cells. It is important in many biological functions and generated from L-arginine by the enzyme nitric oxide synthase. Nitric oxide conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission and cytotoxici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 12 شماره
صفحات -
تاریخ انتشار 2002